2 results
Search Results
Now showing 1 - 2 of 2
Item Design of a cost-effective swimming prosthesis for transtibial amputee patients(Revista Académica Gente Clave, 2022-10-06)swim fin prosthesis has been manufactured for a transtibial amputee patient by 3D printers using glycol-modified polyethylene terephthalate associated with a video recording analyzer that allows the measurement of the angles of the participant's residual limb. The data provided by the study indicate that the knee flexors present, according to Daniel's scale, the strength of 3.5, the knee extension (quadriceps-rectus femoris) a strength of 4, and the adductors (adductor medius) and abductors (gluteus medius, tensor fascia lata) a strength of 4. Mathematical modeling was performed to determine the critical loading conditions, considering some parameters that affect the mechanics of the transtibial amputee's kick, such as the angular velocity of the kick, drag force, and flipper geometry. Similarly, the mechanical strength of the prosthesis was evaluated by finite element analysis, and it was determined that given the angular velocity of the prosthesis, the maximum stress Von Miss 31.78MPa. In tests, the equipment operated at a pressure of 6.1 kPa.Item Advancements in blood rheology and hemodynamics simulation with a brief history(Advance Research in Sciences (ARS), 2023-09-20)Blood rheology is a complex field of study that investigates blood flow behavior, vital for understanding its role in physiological and pathological conditions. This article delves into various rheological models that describe blood behavior, ranging from Generalized Newtonian models to more sophisticated thixotropic and elastoviscoplastic models. One such model, the Horner-Armstrong-Wagner-Beris (HAWB) model, offers valuable insights into the dynamic interplay of reversible and irreversible phenomena in blood flow. Recent advancements, such as the mHAWB framework, provide enhanced accuracy and versatility in modeling blood rheology, holding great potential for diagnostic and therapeutic applications. Moreover, microscopic and mesoscopic simulations have paved the way for deeper insights into blood behavior, bridging the gap between theory and experiment. Multiscale models offer a promising approach to capturing the complexities of blood rheology at various length scales. Finally, we explore the clinical implications of blood rheology, including its significance in conditions like polycythemia, neonatal respiratory distress, and circulatory inadequacy. By understanding blood rheology comprehensively, we can advance our knowledge of complex blood flow dynamics and its potential applications in healthcare.